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RESEARCH SUMMARY

Since October 1, 1973, we have been supported by ARPA |PT offjce to carry
Oout research in image analysis and modeling. The emphasis of our research in
the past two years has been on the development of suitable mathematical models
for images which are useful for image processing tasks such as efficient cod-
ing, enhancement, recognition, and information extraction. Our accomplish-
ments have been recorded in detail in our progress reports. We summarize
here some of the highlights,

A. Preprocessing

We have obtained significant results in both image restoration and ef=-
ficient coding.

1. Image phase [1].

Although it is well known that the phase of the Fourier transform of an
image is generally more important than the magnitude, most past work on two-
dimensional digital filter design concentrated on magnitude specification only.
We demonstrated that the phase accurazy of image processing filters are ex-
tremely important. Even if the desired filter has linear phase, failure to
specify it may lead to disaster. We also developed methods of designing two-
dimensional digital filters which specify both the magnitude and the phase.

2. Recursive estimation.

By modeling images as two-dimenslonal random flelds, it becomes feasible
to apply the Kalman formulation of recursive estimation to image restoration.
However, in trying to derive the optimum two-dimensional estimator, cne en-
counters fundamental mathematical difficultles. We have nevertheless develop-
ed several suboptlmum estimators which in practice perform almost as well as

the optimum,




3. lterative image restoration [2,3,4].

Many image degradations can be approximated by linear models. Then
image restoration on the computer becomes the problem of solving a set of
linear algebralc equations. Because of Image noise, conventional solution
me thods are unusable. We have developed an iterative method (the projection
method) for doing the restoration which offers a tradeoff between nolse and
image sharpness. Compared to the singular value decomposition method studied
at Purdue and elsewhere, this Iterative method offers a similar performance
with drastically reduced computation requirements.

h. Three-dimensional reconstruction [5].

We have studied several methods of reconstructing three-~dimensional
structures from two-dimenslonal x-ray pictures. Specifically, we have in-
vestigated the effects of quantization, beam divergence, and unknown beam
strength. It was found that 64 levels of quantlzation Is sufficient, that a
beam divergence of up to 10° can be tolerated, and that an unknown beam
strength introduces a ring-like structure to the reconstruction.

5. Error-free DPCM codes for ERTS Imagery [6,7].

The difference statlstics of ERTS image-y have been measured; and based
on thesz several easily implementable classes of DPCM codes have been develop~-
ed. They reduce the bit rate from 8 bits per picture element to about 4 bits
per picture element. A slightly more complicated adaptive code reduces the
bit rate to about 2.5 bits per picture element. These codes are error-free in
the sense that they do not Introduce any distortion to the images.

B. Image Segmentation

We have taken two approaches to image segmentatlon: edge extractlon, and

region growing.
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1. Edge extraction [8].
We have developed several improved local operators for edqge extraction.

They work quite well even in a nolsy and blurred environment, These operatore,

have been applied to change detection of missile imagery with excellent results,

2. Region growing [9].

We have developed a computer algorithm calied BLOB whi~h sedlments an image
into regions so that points in the same region have similar characteristics,
The BLOB algorithm was used to increase the accuracy of classifying multi-
Spectral ERTS data. These data had been classified point by point using
spectral signature. By the application of BLOB, regional classification be-
Came possible. This not only increased the classification accuracy (by about
5% on the average) but also reduced the classification time (by a factor of
of about 30:1).

3. Image decomposition [8].

Image decomposition can be considered as a generalization of image seg-
mentation. In the latter, an image is segmented into non-overlapping regions:
while in the former, an image is decomposed into a sum of generally over-
lapping images. For example, an image might be decomposed into the sum of a
low-spatial-frequency image and a high-spatial-frequency image. Many image
processing tasks are facilitated |f the image is decomposed into simpler com-
ponents and each component is handled according to its own characteristics.

We have been developing algorithms to decompose an image into three components:
edges, background { slowly-changing), and textures. This idea of image de-
composition has been applied to image noise veduction. Applying a Wiener
filter to a noisy image reduces the noise but also blurs the edges of the
objects in the image. By treating the edges separately, one is able to re-

duce the noise and in the same time retain edge sharpness,

. -
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C. Pattern Ciassification

i. Texture analysis [10].

We have developed a set of image texture descriptors based on extrema
along scan lines. These texture descriptors are very easy to measure, yet
perform as well as or even better than conventional (tedious to calculate)
descriptors (such as the spatial-dependence matrix) in most pattern recogni-
tion tasks.

2. Optimum feature subset selection algorithms [11].

Patterns to be classified by a recognition system are generally character-
ized by a set of measurements or features. Often, the dimensionality of this
feature space is too large for efficient and reliable application of existing
ciassification techniques. The feature extraction problem is then, to reduce
the dimensionality of the feature space, without significintly affecting the
discriminatory capacity ¢f the feature set. One approach to feature extraction
is to select a smaller subset of m features of the set of n original features
(m<n). Exhaustive search is computationally unfeasible even for modest values
of n and m. Using a branch and bound approach, we have developed algorithms
which are efficient and guaranteed to be optimal. These algorithms were
applied to choose the best subset of 12 out of 24 channels, There are
2,704,150 candidate solutions. The algorithms obtained the best subset with
the computational effort equivaient to computing the criterion for 6000 sub-

sets. The savings are indeed substantial.
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IMAGE DECOMPOSITION

T. S. Huang and J. W. Burnett

!l Introduction

In previous reports [1], [2] we have modeled image scan lines as Markov
jump processes. This model led to nonlinear noise reduction and Image seg-
mentation algorithms that are superior to linear technlques currently in use.

The recursive calculation of a conditional probability involving the
boundary component of the scan line was the key to the nonlinear aigorithms,
Once this conditional probability had been calculated the scan line could be
segmented using a maximum likelihood approach or noise could be reduced with
either maximum 1iklihood or minimum mean square error estimators. Further,
since the conditional probability obeyed a recursive relationship the
execution time and memory requirements of these algorithms were kept to a
minimum.

In this report we start to extend the one dimensional results to two
dimensions. The first step in this extension is the recursive estimation of

a two dimensional constant.

1. Derivation

Assume we have the observations
(1) R(x,y) = Ixy + BW(x,y)

where | is one of K possible values s 355 +ey @y and W(x,y) is a two
dimensional Wiener process (the integral of white Gaussian noise.)

Equation (1) is sometimes written as

(1')  dR = Idxdy + BdW or

¢
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where N(x,y) i5 white Gaussian noise.

Let S =.l:£. t =ﬂl
rn n

Fodi® iy 25085 usis s B
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Define R 5 R(Sm,tqn) + R(Sr-ln’tq-ln) R(Sm,tq_' ) - (Sr-ln’tqn)
From (1)
= Ixy a
nrqn n2 + BAqun r,q RS Gy, meta B [
where
Aqun v w(Srn’tqn) B w(Sr--ln’tqn) ¥ w(Srn’tq--ln) i w(Ss'--ln’tq-ln)

Now Aqun is a linear combination of Gaussjan random variables and hence
Gaussian. Further, since W is an independent area process Aqun is indepen-

dent of Awabn for a#r, b#q. Thus
n s - Py B N 2 hdkly [

- d - : B x
are independent zero mean Gaussian random variables with variance -—71.
n

Let PJ.(n) = P(l = ale(Srn’tqn)s r,q = '! 2’ sney N

n

conditional probability the random field | has value aj

given the observations R upto the point x,y.

Note that nrqn is obtained from R by an operation that (except for some
boundary conditions) is nonsingular. Thus if we define R(x,y) = 0 for x <0

or y <0 then




P(I = ajIR(Srn,tqn)) = P(I " a Inm )

I From Bayes rule we have
t 2 n aixy
- i 2
(n) PJ(O.O) exp| z (nrqn =71
| - 2B"xy r,qg=l n
P-(X’Y) ~ K 2
: Py(0,0) expl—i— I (n - 2032
¢(0,0) expi~-—s— =
=1 2:32xy r,q=1 s n

where Pj(0,0) is the a-priori probability that | = aj.

Equation (2) can be rewritten as

n 2
1 a’. xy
P.(0,0) exp[ I n a, - i 7]
(n) i B2 r,q=1 ran-J ZB2
P.(x,y) = .
j n 2
- XY

I Py(0,0) expld I n
L

rqnal
B~ r,q=1 282

By definition of the two dimensional stochastic integral [3],

1 a A X X
lim =< %) I n = S 7 dR(u,v)
n+ B r,q=1 =N ? Ph=g
a.

= 'B% R(X)Y)

Since exp (+) is a continuous function

-2 a?xy
P,;(0,0) exp[B ajR(x,y) ';T]

. n
,:-':: Pr0Gy) =P x,y) == 3 3Zxy
L Pp(0,0) expl— R(x,y) - —=—]
=1 2 ;2- 2B
Each Pj is of the form
2
f.(x,y) a,xy
-2 L
f?jj;TVT where fz = PE(O,O) exp(B azR(x,y) ;;f-]
L

(2)
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Using a result of Wong [3], [4] it can be shown that each fj obeys a recur-

sive relationship

de (an) 3 B-]a:fj(an)dR(an) +
82 F, (x,y) S0 dR(E,,¥)OR(x, ) (%)

Thus an incremental change in each fj can be calculated by knowing the

""oresent vaiue' of fj and the present value of the observation (see Fig. 1),

I1l. Conclusions

Equation (4) is significant in that it gives a two dimensional recursive
method for caiculating a conditional probability. From (4) we can recur-
sively calculate each fj and hence each Pj' While this result may not find
widespread application it nonetheless represents the first step in deriving
a recursive expression for a conditional probability when the random field |

(1) is a Markov jump process.
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DIGITAL EDGE RESTORATION IN
LINEARLY FILTERED IMAGES

D. P. Panda and A. C. Kak

!. INTRODUCTION

Linear minimum means square error (MMSE) estimation techniques have com-
monly been used in restoring images degraded by the imaging system and observed
in the presence of additive noise (see [1] for brief survey). These techniques
often distort the "edges'' of the restored image. The cause of the distortion
is the fact that the edges mark the boundaries between two adjacent ''clusters"
of different local statistical properties and the estimation of a picture
element (pixel) in one cluster nearby. Depending on the intended use of the
restored image the edge distortion may or may not be too undesirable. If the
image is meant for the human visual system (HVS) then it is desirable to have
sharp and undistorted edges in the image. This is so because, as Hunt [2]
pointed out, the frequency response of the HVS is such that it differentiates
the lower spatial frequencies and amplifies the higher spatial frequencies
which amounts to emphasizing the edge contents of the image. When a linear
MMSE restoration filter does not have any edge preserving constraint or measure
it shall be necessary to find a post-processing technique which would enhance
the edges in the restored image (the term restored image is used here to mean
the outpug of the linear MMSE restoration filter). Many frequency domain
methods are already available for edge enhancement. One such frequency domain
technique is due to Schreiber [3] in which he subtracted from the image a
weighted low-pass version of it to increase the relative amplitudes of the high
spatial frequency components and restore some of the sharpness. Frequency
domain operations may be preferred when being implemented optically. But in

digital implementation spatial domain operations are expected to be more

12
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asttractive than frequency domain operation from the storage and computation
point of view. We present here a spatial domain post-processcr for the en=-

hancement of the edges in the images restored linearly by the MMSE criterion.

Il. EDGE DISTORTION IN LINEARLY FILTERED IMAGES

There are several ways the edges in an image can be modelled. Each of the
many edge detection schemes devised by various researchers is based implicitly
on a specific model of the edges. In terms of power spxctral density the
edges contribute to the relatively higher, spatial frequency components of an
image. In some spatial domain edge detection methods an edge is defined as the
set of pixels that mark the transition of the local mean grey level from one
value to arouiher, while in other methods the change in the variance of the grey
levels is also taken into account. Whether it is the first, the second, or the
higher order statistics that are used for edge detection it is obvious that the
edges are the boundaries of regions that contain different local statistical
properties. When these local properties are used as features in a clustering
procedure the above mentioned regions cluster together in the feature space.
These clusters in the feature space are separated from one another by the edges
in the image space and, in general, correspond to different objects in the ob-
ject space (see Fig. 1). Researchers in the area of remote-sensing make use of
this concept in the spatial clustering of multi~-image data and scene classifi-
cation (see, for example, Haralick and Dinstein [5] and Gupta and Wintz [4]).
We shall use here the terms edges, ''cluster boundarles', and boundaries inter-
changeably,

When a linear estimator is used for filtering, the local properties »f an
estimated pixel are affected by the local properties of all the pixels included
in the observation set for estimating that pixel. Therefore, in the neighbor-

hood of the boundaries of two clusters the estimated pixels will have local

13
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properties depending on the local properties of both the clusters rather than |
just the cluster to which the pixel belongs.
Definitions
Let s(p,q) be the grey level of the Image at the point (p,q). Suppose
the image is scanned in certain direction 8, 0 <8 < 7. In any particular
scan line we define a run R as the set of consecutive pixels such that the
grey level of those pixels is monotomically increasling or decreasing. |If
(pl,q]) and (pz,qz) are the two end polnts of the run then we define the con=

trast of the run as
C(R) = IS(p],ql) - S(pz.qz)l/IS(pl.ql) *5(p,»q,)]

and for any point (p,q) in the run we define sharpness

C(R)
((p)7p,)* + (a)-q,

¥.(p,q) =
8 )z)lfz

We define the sharpness error criterion between an image and its estimate as

8

(Pya) = £ ¥ (p,q) - ¥.(p,q)12
e(p,q = g(Psa g (Psa

where © indicates the value in the estImated image, 6', 62, At Ok are k dif-
ferent directions along which the images are to be scanned for computing the

error,

11, EDGE RESTORATION

Since the effect of pixels from one cluster on the pixels of a neighboring
cluster near the boundary s the cause of the edge dlstortion, 1f we introduce
in the llnear fllter nonllnearity near the boundary such that an estimated
pixel of a cluster Is a llnear comblnation of plxels of only that cluster then

we should expect a great reductlon in the dlstortlon. But if no such attempt Is

14
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made to prevent the edge dlstortion In the linear fliter then a post-processor
is needed to correct the possible dlstortlon In the image. The post-processor
presented here does this correction in the following steps. First it detects
in the output of the linear fllter the boundaries between adjacent clusters.
Then it changes the grey levels and the gradients of the plxels in those re-
gions in such a fashion that the sharpness of the boundiiry is increased. If
needed, it smooths out further the regions that do not constltute the boundary.

Edge Detection

Let S(pl’ql) and s(pz,qz) be the grey levels at pixels (pl,ql) and (pz,qz)
in adjacent clusters | and 2, respectively. We will assume that s(p],ql) and
s(pz,qz), respectively, are Gaussian with means i and My and variances of and

og. Also, for tractabllity In deriving the houndary detectlon algorithm we

wlll replace the expresslon for contrast of a run R by the following
local contrast C(R) = (s(k,8) - S(i,j))/Zu (1)

where L is the average grey level of the region, and (k,2) and (i,j) are the
maximum and the minimum end points, respectlvely, of the run R. When the run

R is across a boundary those polnts wlll not be in the same cluster. Let
D(R) ® S(k’Q’) - S(i’j)

For a run R across a boundary the condltlonal probability density of D given

that a boundary has been detected is glven by
py(d]B) = N(u 0 ?) (2)
D b’“b

where B is the event that an edge has been detected. ub and ¢ . are the mean

b
and the varlance respectlvely of the Gausslan density function. These para-

meters are given by

15
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If instead the pixels (k,%) and (i,j) belonged to the same cluster, say cluster
1, i.e., (k,2) and (i,j) are two pixels at the opposite ends of a run of mono-
tonically increasing or decreasing grey levels but the region between them is

not a cluster boundary, then
p (d|C) = N(u,0.2) (L)
D ¢’ ¢

where C denotes the event that the run is inside a cluster. The parameters of

the Gaussian density function N(uc,ocz) are given by

and

R (5)

If it is assumed that in the output of the linear filter the runs are of
approximately equai length then given a particular value of D(R) whether or
rot the run R is across a cluster boundary is now a pattern recognition prob-
lem. If P(B) and P(C), respectively, are the prior probabilities of the
existence of a boundary and a cluster In a particular region then the Bayesian

solution to the pattern recognition problem is

(d|B) P(B Ry
NCRREAC >1 implies B
= | implies B or C
<1 implies C (6)
16
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Using appropriate Gaussian densities for p(d[B) and p(d|C) we get the dis-

criminant functions,

2
2 di
(@) = - 3+ S (5 + 1og o) + 105 P()
b b b
2
2 du U
s, (@) = - pope g (5 + 10 &) + 10g P(C) (1)
Cc C Cc

In terms of the discriminant function, (6) can be expressed as
g, (d) - g (d) >0 implies edge
<0 implies no edge (8)

There exists a tradeoff between the accuracy of the detection of boundary
and the speed and the cost of computation involved. Where as using both the
first and the second order statistics is expected to give better performance
cost. Often just the first order statistics gives satisfactcry results with
less cost. Hence, we take the variance of and 02 to be equal (= 02) thus re~

2

ducing the complexity of the discriminant function as shown below

g o
% Of = 20
Therefore
2
@ -2 5 (b)
gpld) = == - + log P(b
p 202 Z;f
2
dy u
g.(b) = =& = Eo ¢ log P(c)
¢ 202 ;;7

The decision rule now is
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d >t~ edge

< t = no edge

where the threshold t is

ul- 2
b e P(c)
B2 *+ log ¥15Y
L= g
My~ He
7
20

The probability of error of the classifier is decreased, at the cost of a

little computational complexity, by changing the decision rule as follows:
QB(d) = Qc(d) >t > boundary
< tc+ no boundary
otherwise undecided

When undecided a new run of monotonically increasing or decreasing grey levels
is added to the previous run. This process is continued till a boundary is
detected. The width of the boundary is the cumulative length of all runs used
in making the decision. Since the edge width in the output of a linear filter
does not distort without limit an empirically determined threshold can be set
for the cumulative run length. If at any time in a decision making the cum-
ufative run length meets the threshold 'no boundary' is decided.

Boundary Enhancement and Cluster Smoothing

The sharpness of the edge can be increased either by increasing local con-
trast or by reducing the boundary width. To increase the contrast by a small

fraction we must increase or decrease the grey levels in the boundary region

%
¥




to a great extent which wili be "cut of step' with the rest of the pixels in

the ciuster, thereby creating artifacts. For example, if

sz(k.l) = 75
= 15725 _
contrast = SETaE i/2

Increasing sz(k,l) 5 times to 375 <. decreasing si(i,j) 5 times to 5 gives

375-25 _ 350 _ g

contrast = 375755 = 155 =
or
contrast = ;g;g = %§-= 7/8

which is even less than a twofold improvement. But decreasing the boundary
width to, say, | gives a very ifarge order of improvement in the sharpness.,
This improvement is proportionai to run iength., The worse the edge distortion
is the larger is the run length and consequentiy the higher is the improvement
in the sharpness of the edge.

The boundary width is reduced by a nonlinear mapping of the grey ievels by
which the grey leveis above the midpoint get mapped to sz(k,z) and those beiow
the midpoint get mapped to si(i,j).

The next step after enhancement of the edges is the smoothing of the in-
terior of the clusters. This smoothing may or may not be necessary depending
on the residual noise present in the iineariy fiitered image. If, for exampie,
the linear fiiter, such as the one by Habibi [6], is the kind that used the
image correlation coefficients as its parameters then the amount of residual
noise in a ciuster in the fiitered image might depend on how weil the corre-

lation coefficients used in the filter design match that of the cluster under

19
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consideratlon. Usually the correlation coefficients have to be estimated from

one or a few sample images and unless the restoration fliter is adaptive it

will be impossible for It to watch a'l the clusters encountered.

When needed,

the smoothing is done In the post-processor by a simple flrst order digital

recursive filter. The pole-zero locations of the filter may be controlled to

get the desired amount of smoothing.
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Figure 2 A test image blurred by a Gaussian shape
point spread funit'on and observed in the presence
of additive observation noise
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Figure 3 The image of Fig. 2 filtered by a linear
filter.
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Figure 4 The image of Fig.

3 after the edges have been
restored along the horizonta

1 and the vertical directions

Figure 5 The image of Fig. 4 with grey levels of zero

probability mapped to nearest grey levels of nonzero
probability
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IMAGE SEGMENTATION BY UNSUPERVISED CLUSTERING 111
M. Y. Yoo and T. S. Huang
1. Introduction

This is a continuation cf the work reported ir the last two
interim reports. The basic philosophy of this work was presented in detail
before and only the new clustering algorithm which was used for this work will
be discussed.

2. Clustering Algorithm

We use the non=parametric clustering algorithm developed by Fukunaga et.
al. [1]. For large sample sizes this algorithm becomes basically the same as
the valley seeking algorithm [2].

The only difference in our implementation is that the conditional proba-
bility density function (this is not an actually normalized probability
functioni the value of the function denotes the number of points which have
the same features in the original image) in the leature plane is available
rather than sampled vactors. The algorithm consists of three major steps:

i) determination of neighborhood; i!) searching of roots; iii) assignment of
parent.

Let X be the integer pair in the feature plane (our features are quantiz=-
ed to integer levels), and D(X) denote the number of points in the origina!

picture which have the feature X. The neighborhood of X is the set defined as

ng(® = {7 | dX,V) <0,X# T
where 6 is a preset parameter and d means Euclidean distance.

Then the total number of the original image points which has the feature

in the neighborhood ne(Y) is

24



Ng(X) = £ D(Y)
-Y-E:ne(m

We define the factor G, (X,Y) as
Ny (V) - N (X)
d(X,Y)

Actually GG(YZV) is the discrete version of the directional derivative., Then

Gy (X,Y) =

the algorithm is follows, |If ne(i) is empty, we call i'root, and if the
neighborhood of X is not empty, we calculate 56(7;73 defined as
5 (X,Y) = Max G (X,V)

Yeng (X)

If 56(7;7) is negative, X is also called root and if SG(Y;V) is positive we
call Y the parent of X, 56(7;7) = 0 case is a little bit complex and we
recommend the original paper for details.

Therefore, every point in the feature plane are either classified as
roots or given the parent relationship. (roots do not have parents.) Every
Point except roots are merged into one of the searched roots by parent re-
lationship and the number of roots determined that of clusters.

3. Experimental Results

The number of clusters is very much dependent upon the size of the para-
meter 8 which is used when we define the neighborhood., Smaller 8 gives too
many artificial clusters and larger 6 classifies the whole data as a cluster.
The appropriate size of 8 for this work was 3. For large size data
there is a serious storage problem, and some preprocess for '"throwing away' of
irrelevant data is highly necessary. We shall present some experimental results

in a late~ report.
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(1]

(2]
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TEXTURE BOUNDARY DETECTION

0. R. Mitchell and W. K. Chan

In an attempt to develop efficient image segmentation algorithms, we are
concentrating on textiure boundary detection. Most edge detection algorithms do
not use texture information at all. Our initia) algorithms use texture infor-
mation exclusively, The combination of texture and gradient-type boundary
detectors will be done following our development of the texture edge detection.

The present procedure uses the Max-Min method of tefture analysis described
elsewhere in this report. However, instead of using the.method for a texture
classification, a max-min feature computation is performed in two opposite di~
rections from a point in the picture. The resulting features are compared. |If
the features in opposite directions differ significantly, we mark the center
point as a cundidate for a texture edge. This calculation is performed itera-
tively as we move the center point across the picture. Peaks in feature
differences indicate texture edges as shown in Fig. 1. More resolution to the
edges is found by repeating the scan in directions perpendicular to suspected
edges.,

Future improvement to be added are the automated selection of scan length,
L, based on a regional autocorrelation and the syntactic joining nf loosely

connected edge points to define closed boundaries.

27
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Fig 1. Typical Texture Scan and Resulting Edge Detection
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MAX=MIN MEASURE FOR IMAGE TEXTURE ANALYS IS

0. R. Mitchell and W. A, Boyne

. BASIC MAX-MIN MEASURE

This project is a continuation of that described in the May 1-July 31,
1975 interim report [1]. This texture measure is based on the intuition that
important texture information is contained in the relatijve frequency of iocai
extremes in intensity. The grey levels values along a one-dimensionai scan
direction are first sent through a smoothing process which eliminates reversais
of small ampiitude, thereby retaining oniy the principai extrema.

The smoothing algorithm is described as foliows: let X, be the grey ievel
of the kth point along the scan Iine and let yk be the ''smoothed' vaiue. Let
T be the value of a preassigned threshold parameter. Let us start with y'=x

i
and proceed according to the aigorithm shown below:

IF THEN
T . o
K X1 T3 Yik#l T Xl T 3
X i R S +-I =
ktt ~ 2 Vi S %41 13 Yt T Vi
X + - < y y = x + l
k+i 2 k k+i k+1 2
Figure | iliustrates the way in which the smoothing process eliminates rever-

sals of small ampiitude. Impiementation of the extrema detecting algorithm is
shown in ihe flow chart in Fig. 2. B7 repeating this process for several
threshold settings, a group of extrema counts can be obtained to characterize
the texture. An example Is shown in Fig. 3 using three different threshold
feveis. The set of numbers (6,10,14) would characterize this "texture',

To make the features invariant to multiplicative (gain) changes the log .- i

rithm of the data is used. Since

29
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log a -~ log b = log ka - log kb 5

the extrema count in Fig. 3 is unchanged following a gain change.

1. CLASSIFICATION RESULTS

The texture data used has been described previously [1]. Forty-nine
64x64 samples of each of elght textures were used. The ratios of the number of
extrema at each selected threshold to that at other thresholds were used as
features. The threshold settings were chosen empirlcally to be 130, 110, 90,
70, 50, 30, and 10. (The data was already in log form, ranglng from 0 to 255.)
Training set data showing the feature values for a few of the texture samples
is shown in Table 1.

The 49 samples of each texture were divided into 36 training samples and
13 test samples. Then six features were calculated for each sample and two
classification techniques were used: (1) a simple normalized Euclidean dis-
tance measure with all features weighted equally, and (2) a three nearest
neighbor decision rule. Each texture was classified as a polnt in 6-dimen-
sional feature space. For the first measure, a mean and standard deviation
in each dimension were calculated for each texture from the training samples
and the distance for an unknown sample from the test set was measured from
the mean in standard deviation units. The results are shown in Table 2. Also
included in the table are results using another technique discussed in the
next section.

The classification matrix for the method uslng the 3-nearest neighbors
decision rule is shown In Table 3. The most common confus lons using the max-
min method occur among wood, fur, and water, and between paper and cork. It
seems that the distance measure created by the algorithm Is similar to that

used by humans in grouplng textures.
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I1t. COMPARISON WITH SPATIAL-DEPENDENCE TECHNIQUE

The most common texture classiflcation techniques use statistical mea-
sures based on spatial dependence probabilities. In order to make the tech=-
niques comparable, we limited the technique described by Harallck et.al. [2]
to 6 features and to one dimension. We used 64 grey levels in the spatial
dependence matrix. The best results we could obtaln in using this technique
was 83% accurate on training samples and 66% accurate on test samples as shown
in Table 2. The classification matrix for the result is shown in Table 4.
With 14 features in each of two dimensions the spatial dependence technique
accuracy was increased to 94% accurate on training samples and 89% accurate on
test samples. However the computation times on the CDC 6500 were indicative
of the relative efficiency of the Max-Min Technlque. The total feature gener-
ation and classification for 49 samples of each of 8 textures required 250 cpu
seconds for the 6 feature Max-Min Technique, 845 cpu seconds for the 6 feature
spatial dependence technique, and 1690 cpu seconds for the 28 feature spatial
dependence technique. However, it should be noted that 11ttle effort was made

to minimize the running time of any of the above techniques.

IV. DISCUSSION

The max-min appears to be a promising measure of texture characteristlcs.
The method has presently been used in one dimension only. One two dimensional
extension would be to measure the max-min features in several directions and
use that direction which maximizes some criterla plus the orthogonal direction.
This would make the algorithm invariant to texture rotation as well as adding
a measure of the rotational symmetry of the textures. The method might also
be used to detect texture boundaries by measuring features In two opposite

directions from a suspected boundary.
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It is fairly easy to incorporate the computing required for the max=min
feature extraction in special-purpose hardware. This would make real time
texture analysis possible. This Is very important for apulications such as
steel mill output monitoring where a decision must be reached quickly as to
whether to let the metal continue cooling or to reprocess it,

Also the quantities measured here (number of extrema vs. threshold) might
be called a first order effect. The two curves for cork and paper in Fig. 6
are almost identical and confusions might necessarily be expected in a clas-
sification algorithm which uses only slopes of these curves. However, second
order measurements which include information as to how the small extrema are
interspersed among the large extrema would differentiate between these two
textures. This might be the beginning of a hierarchical structure of texture
primitives: those that differ in first order measurements and those that

differ in second order measurements.

REFERENCES

[1] 0. R. Mitchell and W. A. Boyne, '"Texture Classification Using Max-Min
Techniques,' Image Analysis and Modeling, ARPA Interim Report, August 1975

[2] R. M. Haralick, K. Shanmugam, and |. Dinstein, '"Textural Features for
Image Classification,'" IEEE Trans. Syst., Man, Cybern., Vol. SMC-3, pp.
610-621, Nov. 1973.

32

= g rkww* A o ——— .. g™ A AP



MAX

MAX
- ;
/
% IN/R : s
Q— ol ‘ L) 'a
/ f ox o
'y " 1
/ K - ' ;
0
/ 5§ I /2
o} : o
o 3 _ ﬂ"
LY
O-/0-% ; D
M
Fig. 1 Backlash smoothing and extrema Identification for a threshold distance
of T,
33
e




-~
FOR
MAXIMLM m m
YES YES ¥
M IS A MAX

%
K=+l }7

\

FOR <
MINIMM @ 0 m

YES

M IS AMIN

Fig. 2 Flow chart of extrema detecting algorithm, X  is the grey level of the
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Table ! Training Set Data Showing the Feature
Values for a Few Texture Samples
Features
! 2 3 4 5 6
Name of |# @ 130 # @110 # e 90 # @70 #@50 # e 30
Texture #e 10 #e 90 #e70 # @50 # @ 30 Felo
04  Cork 7624 7637 7338 5677 6246 .6793
D4 Cork 7126 .7767 .6782 .6788 .6227 6287
D4 Cork .k9s57 6964 7671 7821 .7467 5327
070 Wood 0 0385 .2653 .3798 .5228 .6520
D70 Wood 0 . 0405 .3318 .3940 . 5345 7209
D70 Wood 0 0 0641 . 3805 .3721 4398
D57 Paper | .5943 L7465 7513 .8008 .7173 4301
D57 Paper | .6182 .6875 .7619 .6383 .5557 5267
D57 Paper | .5319 .6812 .7886 <7479 7112 .4202
03 Grass | .6373 7751 .8328 « 7456 .7817 .6636
D9 Grass | .6854 .6893 .7536 7765 L7447 6904
36




Table 2 Classification Results Using 36 Trairing
Tralning Samples and 13 Test Samples of
Each of 8 Texture Patterns

Features Used

% Correct

1. Max=-Min Method
Extrema Ratlos, 6 Features

2. Max-Min Method
Normallzed Extrema Ratios,
6 Features

3. Spatlal Dependence Method
6 Features, One D!menslion

L, Spatial Dependence Method
28 Features, Two Dimensions

3-Neai2st Nelghbor
Decislion Rule

Welghted Distance
Declsion Rule

Tralning
93.8

86.8

82.7

94.5

37

Test

83.6

79.8

66.3

89.“

Tralning

72.9

77.1

64.9

87.2

Test

72.1
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Table 3 Classiflcation Matrlx for Max=Min Method Using
6 Extrema Ratio Features and 3-Nearest Neighbor
Decislon Rule

Assigned Category

Trainlng Samples Test Samples

Textures 1 2 3 4 5 6 7 8 12 3 4 5 6 7 8

Dh Cork 1132 = = —~ | 3 ~ -~ 9. — = = = B = s

D70 Wood 2| — 34 - ~ —- - 2 _ ="dQ = = Ve = I =

D69 Wood 3| — = 32 4 - ~ o~ _ = = 10 3 = = = =

D93 Fur b - - = 35 - - = RS S T e

‘ D29 Sand 5| - - = ~ 3% 2 - - =L my = 2 ==
, D57 Paper 6] 2 —- — —~ 2 32 -~ - Rt U e = J§ = =
D38 Water 7| — 2 = = — o 346 — = 2 B = & = 4 =

D3 Grass 8] — — - | —~ - - 35 L T L
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Table 4 Classificatlon Matrix for Spatlal Dependence Method

Using 6 Features and 3-Nearest Nelghbor Decision Rule

' Assigned Category
Tralning Samples Test Samples
Texture 12 3 4 5 6 7 8 1 2 3 L 5 7 8
Db Cork 1 |29 = = = 7 = ~ o 7 = = = 2 =
' D70 Wood 2 | = 25 10 = - — | - - 9 3 - - i =
| D69 Wood 3 | = 4 32 - - - - o ady sl G 1 e —
D93 Fur b= = 1 3 = - 1 = =lgniee B = e k=
D23 Sand 5|1 = ~ = 30 1 4 = = Al TR g 6 -~
DETFAmbrL i [ = e B e M -
D38 Water 7 | = — = = 2 — 34 = = mEe i e |
Dy Grass B 1 = ) =3 w o= oag e Tl Ay Mal il g
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APPLICATION OF OUTER-PRODUCT EXPANS|0”S T0
FEATURE EXTRACTION IN PICTURES

K. Fukunaga and G, V. Sherman
A brief description of the two-dimensional version of the subspace method
follows. For simplicity square nxn pictures will be assumed. First a
representation space is constructed for each of M classes. A typical repre-
sentation space is characterized by the orthogonal projection operation Q(-)
c

Q(A) =

m
r
b5
i =

g 3

. (o] A ¥;) 0 4] (1)

where A is a random nxn picture, and m. ==t mr = fis m. and m_are the column
space and row space dimensionalities respectively and are selected so that
about 90% to 95% of each column or row squared norm is contained in the repre-
sentation space on the average. The {¢i} and {wi} 1=1,...,n are arbitrary
orthonormal bases. However, two bases in particular have been found to work
well. The first is the two-dimenslonal Karhunen-Lloeve transformation [1] in
which the { ¢ i} are eigenvectors of the sample autocorrelation matrix obtained
from all columns of training pictures In a particular class. Similarly the
{:i} are derived from the sample autocorrelation of picture rows from the
same class.,

The other basis referred to is obtained by selecting the {¢i} and { % i}
as the singular vectors of the slngular value decomposition of E {A} [2] where
expectation E is restricted to the class In question.

Feature spaces Q" are obtained from the representatlon spaces Q by either

(2) or (3). Subscripts Indicate class labels.

“This work was supported in part by NSF Grant GJ-35722,
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M
Q =Qn (22] Q) (2)
L#k

M
Q n (;2, Q,nq) . (3)

2#k

%

The intersection of two subspaces is defined to be the subspace contained in
| both of the original two subspaces [3]. The union of two subspaces is defined
to be the subspace consisting of all linear combinations of vectors origina*
ting from the original two subspaces. Note that we are dealing with the
vector space of nxn arrays.
Our research has shown that (2) and (3) are definitely not equivalent.

Part of this phenomenon is due to failure of subspaces to satisfy the dis~
tribution law of logic, Namely

G (G Ug) 1N ) uign Q) (4)
and

QU QN g4 (qug) nig ug) (5)
However, further research is needed to study this phenomenon. Algorithms for
calculating Q] U Q2 and Q] f]QZ exist but will not be discussed for brevity.

*
Classification is accomplished by minimizing criterion Jc(-).

2
m_ m

T
J*(ko) = min zc zr ¢§k) (A~E { A}) w}k) +Aew

kK i=1 j=1

ko (6)

*
If class ® 0 minimizes J (+) over all other classes W then random picture A

is classified into class wko'

Experiments with this method on the 24x24 Munson handwritten numerals

demonstrate a phenomenal feature extraction capability., A 75% reduction in

LY




the number of features, from 576 to 144, results in a mere 2.57 decrease in
classification accuracy.

Further research is needed to relate the intersection of feature sub-
Spaces to intrinsic dimensionality, data dimensionality, number of classes,
and classification error. The power of this method lies in its reliance on
data structure determined by training samples rather than dubious parametric
forms,

Preliminary investigations in these areas are promising, For instance
we already found that M subspaces always intersect if the sum of their
dimensionalities is strictly greater than (M-1) times the dimensionality of
the observacion space. So the problems are solvable,
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A BRANCH AND BOUND CLUSTERING ALGORITHM*
K. Fukunaga and P.,M, Narendra
In ciustering, each of N samples is assigned to one of clusters Wives ey
| where the number of clusters, M, is assumed to be prespecified., Then, there

are MN possibie aisignments and they are expressed in a tree form as follows:

SAMPLE ASSIGNMENT

X, ¢y (pw,wz or w3)

X2 Ca
X3 C3
'Y .
KN CN ® 6 % o ® 9 e & &6 o o & @ oV o

Fig. |

In order to appiy the branch and bound method successfuiiy, we have to come up
with a proper criterion to evaluate each node so that the branches under the

node can be eiiminated from the search,

One of the popuiar criteria which has been used in ciustering frequently
is J=tr S;i Sw where Sm and Sw are the mixture scatter matrix and the within-
class scatter matrix respectiveiy. Since the coordinate can be selected to
satisfy Sm = 1, we may use J = tr Sw. This criterion was first used in

ISODATA [1], [2). Thus, our problem is to find the ciuster assignments,

CireeerCy SO AS to minimize tr S .
M w

“This work was supported in part by NSF Grant GJ-35722
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When the search comes to a node at the k-th level, CI""’Ck are already

given (for example, < =y and c, = w3 for the node A of Fig. 1), but

min

C417 " 2Cy could be anythlng., Therefore, if we can calculate either Cpa1reeCy

J(c],...,ck, Ck+l""’CN)°r the lower bnund of that
L peee < ml J pgeeey »C eee 4 C (])
(c, ') —ckﬂ,'.‘..,cN (c, CierChag 2o e o Cyy)

then with the satisfaction of
B §_L(c|,...,ck) (2)

all branches under the node can be eliminated from the search where B is the
current lowest J found up to the present. That is, all possible cluster assign-

ments under the node glve larger J's than the one which was already found.

The tighter the lower bound s, the more branches are eliminated effectively

from the search.

Our study revealed that the wlthln-class scatter criterion has a nice

property as

= )
N J(C"...’CN) ik J(C],...,Ck) + (N k) J(Ck+"0"’CN) (31
where J(CI"""Ck) is calculated from the within-class scatter matrix of
XI,...,Xk with cluster assignment CyseessGy s and J(Ck+l""’cN) is for
. * . .
xk+l""’XN with CrplreeesCye Let J (Ck+l""’cN) be the criterion vali- for
the optimum cluster assignment when only a subset’ {Xk+],...,XN} is cc..sidered.

Then, Jx(ck+l,...,cN). §_J(ck+|,...,cN), and (3) Is bounded from the lower

side as

¥
N J(C',o.och) ik J(C',ooo’ck) + (N-k) J (Ck+li""CN) (l‘)
The right-hand side of (4) 1s Independent of the cluster asslgnments for

Xk+],...,XN, and provides the lower bound of (1).

Ly
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*
There are many possible ways to calculate J (Ck+l""’cN)' One is to |
from J" (c) and teulate J* ( ), I )
start from cy) and to calculate Cy-1Cp) Cy-2? Cn-p? Cy)oee. success
ively. The branch and bound method with the node evaluation of (4) gives an

efficient way to do this successive extension. When the number of samples

becomes large, we may divide the samples into L groups, ’ {XI""’Xk R,
]

.,sz},..., XkL_'+I,...,XkL} (kL = N). The cluster assignment of

each subset is optimized as was mentioned above, keeping the results of the

Cpe
LKk T

* %*

intermediate optimizations, J (Ck.)’ J (Ck RPN )seee . Then, two subsets,
i i i

for example {X]""’Xk } and” {X X '}, are combined to form a new la

gecey
| LI | ky

larger subset. For 1 <k <kl’ the lower bound is computed by

*
(k] + kz) J(CI""’Ck]+k2) > k J(c',...,ck) + (kI - k) J (Ck+l""’ck])

+ (e, = k) J*(ck]+],...,c,2) (5)

Thus, L subsets are grouped to larger L/2 subsets, and they are again grouped
to L/L subsets and so on.

The procedure to calculate the lower bound mentioned above is only one
example among many possibilities. We would like to try many others. Also, we
would like to apply this idea to other criteria, particularly to the valley-
seeking clustering,
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IMAGE RESTORATION USING THE PROJECTION METHOD ALGOR|THM
T.S. Huang, M. Kaveh and S. Berger

1. Introduction

The projection algorithm has shown promise as an effective method of
image restoration. It is well-suited to the treatment of linear spatially-
variant degradations, Also, certain types of a priori information that may be
available about the oriofnal image can be easily incorporated into the restor-
ation process.

The algorithm “as been applied to both one and two-dimensional signals in
order to evaluate irs potential as a restoration technique. The results which
are outlined in this report indicate that the algorithm can be an effective
method for the restoration of images,

2. The Algorithm

If the degradation of a two-dimensional image can be represented by
g(x,y) = D[f(x,y)] + n(x,y), where f(x,y) Is the original image, n(x,y) is
noise, D is a degrading operator, and g(x,y) is the degraded Image, then the
Ppurpose of the restoration Process is to approximate the original image as
ciosely as possible. The degreding operator is assumed to be linear although
space-variant,

If we neglect noise, the discretized version of the degradation is:

172" INN
9 = a1 fit ... *anfy
O =y fit ... *aynfy

where N may not equal M, The projection algorithm is an iterative technique

for solving this system of equations,
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The solution is obtained by successive projections onto planes in hyper-
space. For the case where a unique solution does exist, the algorithm will
converge to the point of intersection of the hyperplanes. If the planes do
not intersect at a single point, the algorithm will converge to a point which
may be a useful approximation in a restoration sense.

The mathematical form of the algorithm is given in vector form. Let
f = (f,,f .,f.) be a point in N space, If the initial guess at a solution

1’7°2°°°
i fl0) _ fl(O)’fz(O)’“.’fN(O)

"l

, the new solution is the projection of the

peint f onto the hyperplane g9, = a]]f‘+...+a‘NfN. %o
[f(o)'g -g,] a
i(‘) = f-(o) e ] 1 -]
Y
where a, = (a“,a‘z,...,a‘N). The next iteration consists of the projection

of f}‘) onto the hyperplane 9, = 3, ° f where a = (82]’---’32N)- This pro-

cess is continued to the Mth plane. This completes one cycle of iteration.

3. Results

The effectiveness of the projection method has been evaluated for
several test cases. One test involved a spatially variant degradation in the
horizontal direction. The original test image was an ''X'"' in a 128x128
pictule array. The intensity of each picture element was represented by an
integer from 0 to 255, The image arrays were stored on magnetic tape in a
compacted format. The Gould electrostatic plotter was used to obtain half-
tone reproductions of the images. The restoration was implemented on a CDC
6500 computer.

The degradation was a smearing which increased its effect toward the

edges of the image. The points on the vertical center line were not affected.
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By applying the projection algorithm, the image was made increasingly sharper
with each iteration. However, the effect of any noise was also increased,

So the user would have to decide which fteration yielded the 'best"
restoration.

The performance of the projection method was also investigated for a one-
dimensionai signal, The original signal consisted of two unit pulses separa-
ted by a small distance., The degraded signal was obtained in the Fourier
transform domain by the use of a triangular low=pass filter, The resultant
degradation caused the two pulses to be smeared into one wide pulse,

The projection algorithm is capable of utilizing a priori information
about the signal. For instance if the signal is known to be positive or be
zero in certain regions, the algorithm can include this knowledge in the
restoration process, Sevsrla cases were treated with various amounts of a
priori information. The algorithm was capable of resolving the image into
distinct puises after a few iterations. |In general, the addition of more
a8 priori data improved the performance. The projection method compared favor-
ably with the least-squares inverse filter method, which was also employed,

Two~dimensional images of 128x128 points werr. also tested. The images

were digitized versions of photographs, The results indicate that the
algorithm can improve on the degraded image, but the effects of noise dominate
the image after a certain number of iterations. Each complete iteration re-
quires about 12 seconds of computation time. The optimum number of iterations
is a subjective quantity,

All the above experiments involved image degradations which were simulated
on the computer. In our recent work, we applied the projection algorithm to an

optically degraded image, Specially, we took an Image degraded by camera motion

48

bt e AT gt T e o
carmas -
o s o

o &S et
E T A p—— ™ s by
T SR e % S



(Fig. 1(a)), digitized it, and fed it into the computer. Then it is restored
by Wiener inverse filtering and by the projection aigorithm. The results are
shown in Figs. 1(b) and (c). The projection algorithm gave a much better

restored imade,
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ESTIMATING THE IMPULSE RESPONSE OF A DEGRADING SYSTEM
Brian 0'Connor and T. S. Huang

One major problem in image processing is the estimating of the impulse
response of a degrading system. Once this is found a . inverse filter or other
algorithm can be found and applied to the image to <, "'nate the effects of the
degrading system. The estimation problem car be broker down into two cases;
in the first, the ideal and degraded images are assumed to be known to some
extent; ard in the second, only the degraded picture is present. This latter
case is called blind deconvolution. Introduced below is a technique which can
be applied to either of the above cases, but should find wider use in the
latter. This method incorporates image segmentation with a modification of
Kncx's method [1] for multiframe processing to estimate both the magnitude and
phase of the degrading system function.

Let v(x,y) be an ideal image which is degraded by a system with impulse
response h(x,y). The observed image is ve(x,y) = v*h which can be segmented
into many rectangular strips, vci(x,y), i=1,...,N. If the extent of h(x,y)
is small compared to the duration of the segments vci(x,y), then vci(x,y):
v.*h.  This implies VCi(fI,fz) = vi(fl,fz)-H(fI,fz); furthermore, IVCi(fl,fz):

&, g

"IH(EF) ] and Lve, (F, L) =LV (F,F,) +LH(F,F). To

estimate IH(fI fz)l the square magnitudes of the N segments are averaged, so

i, SERT .. o 2] 2
RNV ZIVE, (F1,F)) S/ ZIV(E,,F)|

In some applications the light distribution of the N reglons of the orliginal

image vary sufficiently fast and are sufficiently differant from one another
]

so that N-ZIV(fl,fz)fz is approximately a constant. This Implies that the

approximation of the magnitude Is independent of orlglnal scene.
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In order to estimate the phase of the system function an average auto-

correlation is performed,

b vci(fl’fz)'vci(fI+AfI’f2+Af2)

= [z vi(fl’fz)'vi (fI+AfI,f2+Af2)] H(fl,fz)-H(fI+AfI,f2+Af2)

After some manipulations we find

[ZVCi(f f,

2)-Vci(f|+Af|,f2+Af2)]|ZVi(fl,fz)-vi(fI+AfI,f2+Af2)|

I’

lZVCi(fl,fz)-vci(fl,Afl,f2+Af2)|[Zvi(fl,fz)-vi(fI+Af ,f2+Af2)]

1

C H(fl,fz).H(f|+Af',f2+Af2) f +Af2)

a eJ(e(fl,fz) - e(f'+Af

"2

|H(f|,f2)-ﬁYfI+Afl,f2+Af2ﬂ
that the imaginary part of the complex logarithm gives an estimate of the
Phase in terms of phase differences. In the above manner the phase differences
between every pair of adjacent points can be measured over the whole transform
plane,

Programs are being written to simulate the above technique and should give
better results than pProcedures which estimate only the magnitude of the de-
grading system function., A problem could arise in the Phase estimation since
it is determined by adding phase differences together, which means that the
phase errors add, thus producing the variance of the final error to increase
linearly,
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MISSILE TRACKiNG ALGORITHMS
T. S. Huang and G. Y. Tang

This project is motivated by the real-time video tracking problems as
the U.5. Army White Sands Missile Range. The missile movie frames were
supplied to us by Dr. Alton Gilbert of WSMR.

Our preliminary experimentation has indicated that it is possible in many
cases to detect and locate a missile by processing single scan lines. More
specifically, we have found that it is possible to determine whether a scan
line passes through a missile (and the location of the crossing) by cross-
correlating the scan line with a paradign. This opens up the possibility of
very fast algorithms which scan selectively instead of full frame. Solid state
imagors, such as surface acoustical wave and charged-transfer devices, are
particularly suitable for selective scanning. These devices can also be used
to do crosscorrelation at extremely high speed.

1) Missile Tracking

We describe an example of missile tracking uslng single scan line cross-
correlations. We used 10 evenly spacad scan lines over the missile frame shown
in Fig. 1, and crosscorrelate each scan line with the paradign shown in Fig. 2.
By applying a suitable criterion to the correlation results, we were able to
determine which scan lines passed through the missile and the crossing loca-
tions. Then, among the scan lines that passed through the missile, we picked
oJt the uppermost and lowermost scan lines; and we scan at a finer spacing
than before a few lines above the uppermost and a few lines below the lower-
most to locate the noise and the tail end of the mlsslle (again by slingle scan
line correlations). The resu'i is shown in Flgs. 3 and 4.

2) initial Acquisition of the Missile

in the WSMR application, we know beforehand where the missile will be
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launched. We can aim our imagor at the launch site and scan repeatedly (and

doing crosscorrelation) at high speed one or several lines above the missile
site. Then, we can detect the missile as soon as it moves through these scan

lines, and try to track it from that point on.
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Figure 1 Original Picture
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Figure ? Waveform of Preset Paradigm
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Figure 3 Target Being Taken Out. Dark
Area is the Parallelogram Found

Figure 4 Target Isolated from the Background
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INFORMATION EXTRACTION FROM Y=RAYS IMAGES*
G. Y. Tang

Gamma ray cameras have been used by physicians for many years to detect
diseases. The grey tone distribution of the picture obtained by the gamma ray
camera contains most of the information about the mass density of the patient's
tissues or muscles. As a matter of fact, the gamma ray picture is a projec-
tion of the mass density of the object illuminated by a radiation source,
Physicians make their Jjudgement by comparing an unknown picture with some
known diseased patterns. However, since the rich varieties of diseased pat-
terns and the mutual influence between Symptoms, the procedure of making
judgement is not a straightforward work. Usually it takes two or three years

training plus experience. In some Cases it is even required a joint judge-
ment of several physicians. The complexity in judgement does not mean that
the request from patients should be ignored. A computer-aided-judgement-
making algorithm is therefore necessary in order to alleviate the physician's
burden and to serve more patients. This is also the ultimate goal of studying
gamma ray pictures.

in this report, an attempt has been made to employ pattern recognition
techniques to solve the problem of computer-aideded Judgement making for gamma
ray pictures. As shown in Fig. 1, a pattern recognition system consists of
three stages in sequence, i.e., pattern analysis, feature selection and
classification, Pattern analysis is to see what is the most informatlve part

which can be obtained. Feature selection is to throw away some unimportant

measures and to retain only those which are sufficlently representative so
that the computational effort in classiflcation is reduced and that the
probability of wrong classification due to the disturbance of unrelevant data
is reduced too. The purpose of classification 1s to assign an attribute for

each input pattern.

*This work was supported in part by Consiglio Nazionale delle Ricerche, Italy.
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Some pattern analysis experiments whcih have been done are described in
the first section of this report. In the second section some possibie ap-
piications of these measurements for the purpose of combined aid system
recognition are discussed briefiy.

I, Pattern analysis.

A gamma ray picture is represented by a matrix’ {1 (i,j)} i=i,...,Nx,
j=l,...,Ny where Nx and Ny are the spatial extention of the gamma ray picture
in x and y directions. |(i,j) is the (i,j) entry of that matrix. Its value
corresponds to the intensity of radiation energy at (i,j) position. In our

16

experiment, Nx = Ny = 64, 1(i,j) varies between 0 and 2 -1, Statistically a

gamma ray picture is an outcome of a Poisson's process. So P(I(i,j) = x) =

e-m(i’j)m(i,j)x

: , P(1(i,j) = x)Ax is the probability of 1(i,j) of value x.
Poisso:;s distribution indicates that, for the area of higher mean value, the
variance or the noise is larger too. |In order to combat the noise disturbance,
a smooth technique is required. A two dimensional symaetric lou=-nass filtar

is chosen Tor tiiis purpnse, After the noise has been cleared out, we threshold
the picture by a preset threshold, The thresholded picture has only two grey
tones | and 0. | is assigned to those picture points with I(i,j) > T, T is the
threshoid, 0 is otherwise., The thresholded picture is denoted by I;(i,j). A
simple edge detector can be applied to 1”(i,j) in order to get contours. The
edge detector works as if |[1°(i,i) = 1“(i+1,j)]| > O then it reports an edge
point at (i,j), otherwise it reports no edge points. Fig. 2 shows the contour
obtained by setting threshoid T=8000 and by using the foregoing edge detector.
Notice that the left lobe and the right lobe are not distinguishable. This

gives us a hint to try a fower threshicld T=4500, Fig. 3 displays the contour

thus obtained. Both lobes are not shown. A third trial is a threshold of
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value 7000. Fig. 4 displays the result. We can see that the two lobes are
present, but the left one is rather small. More than that, the deformity
which contains most of the symptomatic information is not significant., A1l
these evidences indicate the difficulty to set up a good threshold so that an
informative contour may be obtained. In order to combat that, we proposed an
approach which should achieve that 1) it guarantees two separate contours for
the two lobes 2) it subjects to a better tolerance for the variation of the
threshold (This means, for example T=4500 and T=7000 should generate about the
same contours), The basic frame for the proposed method is to break up the
entire picture into several regions, Then we locate these two regions which
enclcse the two lobes., New threshold on the original picture for each of
these two regions is set up according to the local grey level distribution.
Finally, a contour follower is employed to get the coordinates of the points
on the contour. The foregoing edge detector is used for the purpose of dis-
playing,

More specifically, the proposed method can be described as:

(1) Picking up a threshold T.

(2) An operation Th is defined as

T, (i,))

T (L)

Vif 1(i,j) > T

Oy 0illF < (s g ) 2T
and |~ = Th(l) means 1°(i,j) = Th(i,j). So I” is a matrix. 1(i,j) which is
the picture matrix has been defined before.
(3) An operation E, which is the edge detector, is defined as:
E(i,]j)

E(i,j)

Vif J17(i,5) = 1°(i+1,5}] >0 for all i and ]

f

0 otherwise, where |* = Th(l) and 1“7 = E(1”) means

1°2(i,j) = €(i,j) for all g Jis
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() From 1°*, we obtain two points TOP, BGLTTOM as:

TOP = (I',jl) such that E(Il’jl) = 1 anu Jy Ts the maximum of

all j such that E(i j) =1,
BOTTOM = (IZ,JZ) such that E(IZ,JZ) = | and i, is the minimum
of all j such that E(i,j) = 1.
(5) A line M is defined as
s [ F 1. .
M= {(i,j)] j= E‘(J'+J2), b= T,00,N )

(6) A line MI is defined as

Y T P Lo & e
M] - {(I’J)'J = 2 (J2+ 2 (J'+J2)' ! """Nx}
(7) An operation € on each horlzontal line, i.e. 1 = const, is deflned as
. 1 Nx
C(j = const) = iR 12(i,j) xi
joi=1
where Nj is the number of 1's on the line j = const on picture 1”. This

operation locates the centroid on each horlzontal line.

(8) For lines lying between M and M', we can apply operation C to each of

them. Then we obtain a set of M, =M+ points (xl,yl), (xz,yz).....,(XMi_M+l’

YH -M+I)' The first component is obtained by operation C, the second is the
1
one defining the horizontal line.
M, =M+1

(9) A line Y = AX + b s found such that 'Z (y'-ax'-b)2 is minimum,

Y is corresponding to the second element and X ;:'corresponding to the first
element in our 1(i,j), 1“(1,j), 1”°(i,j) notations.
(10) A line segment R:Y = ax+b where %-(j'+j2) & Yf_jl is thus obtained.
(11) The picture is now segmented into four components denoted by A, B, C,
D. A is the background. B is what is below the line M but not the background.

C is what is to the left of R and what 1s above M, but not the background. D

is the same as C except to the right of R, Flg. 5 shows the segmentatlion from
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Fig. 2. Fig. 6 shows the segmentation from Fig. 3. Fig. 7 shows the seg-
mentation from Fig. 4,

(12) From now on, we are only interested in area C and D. For each of
these two areas, we define a histogram from which a new threshold can Le
o>tained. The common maximum and minimum in areas C, and D are located.

is

They are denoted by MAX and MIN respectively. The histogram Hc and Hd

defined as

H (k) = # {(i,j)]k. < L0 j)-MIN XICELL <k+1,-(i,j}EC} and
z MAX=M I N
Hy(k) = # 0,)) |k < LGN cocey <ket, (L)) E 0}

MAX-MIN
where k = 1,2,...,ICELL, and # denotes the number of elements. The new thres-

holds TC and Td for the area C and D respectively are:

k
T = min {k|.=f h(i) > N}

k
T, = min {kli=f h(i) > N}
i, = AL4G,5)G,j) £y X PER 1

N

I

' #03i,j)Gi,j) ECY X PER 2
PER 1 and PER 2 are two preset numbers which are 0 <PER 1 <1 and 0 <«
RER 25 <Mz
(13) Thresholding and edge detecting same as (2) and (3) are applied to
areas C and D with new thresholds T, and T, respectively. (PER 1 = PER 2 = 0.4).
Fig. 8 shows the contours obtained from Fig. 2. Fig. 9 shows the contours
obtained from Fig. 3. Fig. 10 shows the contours obtained from Fig, b,

Notice that we can always obtain two separate contours by the three
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different thresholds, i.e., T = 4500, 7000, 8000. Also, the contours from
T = 4500 and T = 7000 are exactly the same and the contour from T = 8000 is
very similar to that from T = 4500 and T = 7000. Especially for the good
lobes [the right one], they are almost indistinguishable.

(14) A contour follower is designed to replace the edge detector su that
it will always report a closed contour no matter what the shape of the contour.
The input to the cor.tour follower is a window of size 3x3, The center of the
window [0 on Fig. 11] s already known on the contour. One of the eight
neighbors of the center is known on the contour too, The function of the
contour follower is to find a point which is supposed to be the next point
in the eight neighbors around the center. Then the window moves to and
centers at that point, Repeating the same procedure, we ca) obtain tne
whole contour. The way tc locate the next point from the eight neighbors of
the center is simply looking at the eight neighbors it counterclockwise sense
starting with the neighbor already known on the contour. For example, on
Fig. 12, searching starts with 2 and then 3,4,5 until 6 where the next point
is found. The contour then reports the coordinate of the next point (i,])
ancd the direction of moving which is coded into 8 numbers as shown on Fig, 11,

Table 1 lists the two contours obtained by setting T = 8000 and PER | =
0.4 and PER 2 = 0.4, The edge detection is replaced by the contour follower.
The corresponding direction code is attached too. Fig. 14 shows the scatter
distribution of the direction code on Table 1.

(15) The contours obtainec from the unfiltered picture by the same method
as to obtain Fig. 10 is shown on Fig. 13 where T = 8000, PER | = PER 2 = 0.4,
Obviously these two contours are more noisy.

Fig. 15 shows the contours by setting T = 8000, PER 1 = 0.6, PER 2 = 0,4

from a filtered picture by the same method as to obtain Fig. 14.
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Fig. 16 shows the contour by setting T = 8000, PZR 1 = 0,15, PER 2 = 0.4
from a filtered picture by the same method as to obtain Fig. 10.

I'l. Discussions.

In the previcus section, it shows the possibility to obtain two separate
contours from a gamma ray picture by the proposed method with which a set of
coordinates (xi’yi)’ i=1,...,N is reported. How to use this set of coordinates
to make a classifier is another problem. One way to tackle this problem is to
perform a transformation on the coordinates so that, after transformation, the
new coordinates should be 1) invariant for translation of the object, i)
invariant for the rotation of the object, 3) invariant for the reflection,

L) invariant for the swelling or shrinking of the object. Several methods ha
have been studied in order to achieve them. Locating the centroid and using
the centroid as the origin of a polar coordinate system is one way. The use

of Fourier transformation by treating each point (Xi’Yi) as a complex number
xi+jyi, j= V=1 s another way. The curvature may be a us«ful quantity too.
However, whatever the transformation is, we will have a new set of coordinates
(ui,vi), i=l,...,M. Generally M is smaller than N. A discriminant function

f is defined on ui’vi)’ i=l,...,M such that f(u],v],uz,vz,...,uM,vM) >0
indicate disease, and f(u],v],uz,vz,...,uM,uM) > indicates no dizease f may be
a8 linear or a ronlinear function. Supervised or non-supervised (learning
techniques may be used to get f with a set of training data which we know if
any of them is good or diseased.

Accompanying with experiments, further studies of transformations and
discriminant functions are necessary to complete the system. The syntactic

pattern recognition technique may be adapted too. How acceptable of the

syntactic approach depends mainly on experimental results, It is hard to

63



predict. A combination of statistical methods and syntactic methods may

bring in a more accurate diagnosis., The employment of different pattern

recognition techniques to this Particular set of data is the major task in

the future.

Pattern Feature

______;1 Classification
Analysis Selection

Fig. 1 System for pattern recognition
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Fig. 10 Contours obtained from Fig. 4.
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SATELLITE IMAGERY NOISE REMOVAL
0.R. Mitchell and P.L. Chen
I. Introduction,

This recent work is a continuation of the previous report 'Satellite
Imagery Noise Removal' [1]. We are using homomorphic filtering techniques to
remove multiplicative nolse effects such as cloud and atmospheric turbulence
in ERTY imagery.

Our approach is to estimate the ncise power spectrum by classifying each
region of the noisy picture according to the level of the noise present using
the multispectral data analysis software system developed by LARS. Once the
noise power spectrum is obtained, an optimum filter is derived to separate the
signal and noise. Information is then extracted from the recovered signal
using multispectral classification techniques,

Il. Theory of Cloud Removal,
Assume an image of the earth is produced when a light cloud cover exists

over the region of interest as in Fig. 1.

Sun Satellite
I1Tumination Scanner

s(x,y)=alr(x,y)a(x,y)
+ 1[1-t{x,y)]

cloud transmission
t(x,y)

Attenuated

IMlumination al s 9round reflection rix,y)

Fig. 1 Satellite Scanner Image Components
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We have assumed that the cloud reflection of sunlight plus the cloud absorption
equals one and that the illumination is approximately constant on the earth

surface. The image received at the scanner is

sOGY) = alr(x,y) tlx,y) + 1{I-t(x,y)] <1
where r(x,y) is the signal and t(x,y) is the noise.

sOGy) = 1t(x,y) lar(x,y) =11 + |
Takino the logarith

log[1-s(x,y}] = log | + log t(x,y) + logl[l-ar(x,y)]
Notice that now the signal and noise are additive so that an optimum linear
filter can be applied,
The technique is as follows: ''|! may be approximated as the brightest point
in the image [corresponds to t=0]. The original data is therefore inverted by
subtracting the intensity at each point from the maximum intensity in s(x,y).
The logarithm is then taken of the inverted data. Now the signal and noise
are additive. The power spectrum of the noise t(x,y) is estimated using tech-
niques discussed in the next section and a Wiener filter is used to get the
estimate of log{1-ar(x,y)]. The signal is then recovered by taking the anti-
log, inverting the intensities, and increasing the contrast.
P11, The Classification of Cloud.

The analysis of clouds as a multiplicative noise in ERTS imagery is im-
plemented by using the classification technique at LARS. In this report the
classification of cloud is based on the amount of cioud cover located at each
pixel,

The LARS classifier processes multispectral data one point at a time
classifying unknown data using training statistics developed from pre-classi-

fied data, r
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T e by A, o Syt
:

Examination of data
quality

Y

Selection of candidate
training samples

A

Clustering }

Association of cluster
classes and information

classes

Statistics (mean and
covariance matrix)

Separability
information
|

training samples

Calculate mean and
covariance of
training samples

Classification
execution

l

Information and
feature extraction

- Fig. 2 Flow chart of LARS classification
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Fig. 3 A section of Chicago and vicinity
LARS Run 7300 3600
Channel 4
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Fig. 4 Classified picture of Fig., 3
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The tasic assumptions for classification are as follows:

(1) A1l class probabilities are equal,

(2) The probability density function of training samples is Gaussian.

The decision criterion for classification is the so-called maximum likeli=-
hood 1ule. The unknown data point is compared with all of the training
classes and then is assigned to the most likely class, The detailed informa-
tion about ciassification algorithm can be found in LARS information notes
[i2's 31’

A general procedure for the classification of clouds is described in the
block diagram in Fig. 2.

Consider Fig. 3. This is a section of original ERTS-1 multispectral
scanner data (channel 4), Obviously, a large number of classes of clouds can
be defined, however, only four kinds are chosen. These are Full cloud (F),
Most cloud (M), Half cloud (H), and Small cloud (+). Water and ground are
defined to be a class of no cloud.

Fig. 4 shows a classified version of Fig, 3. It is hard to compare these
two pictures, because the classified picture is based on all four channels,

The description of cloud as we defined in this manner has proved to be
very successful when one sees the training and test field performance.

Tables 2-1, 2-2 show these results,
IV. Noise Extraction.

Fig. 5 shows a small section of Fig. 4, which has size of 6ux6h (Tine
838-964-2, Col. 1220-1346-2).

Notice that a classification map (Fig. 5) is simply different integers
representing each class. Since these are six spectrally distinct classes,

irtegers 1 through 6 are used to represent them. Fig. 6 shows this integer
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Table 2-1 Training Field Performance
Number of Samples Classified Into
Group No. of Pct. Fulcld Moscld Hahcld Smicld Water Ground
Samps Corzt
Fulcld 100.0 3 0 0 0 0
Moscld 100.0 ¢ 2 0 0 0 0
, Hafcld 100.0 0 0 6 0 0
| Smlcld 15 100.0 o] 0 0 15 0 0
; Water 6 100.0 0O 0 0 0 6 0
' Ground 100.0 0 0 0 0 0 6
38 3 2 6 15 6 6
Overall
Performance 38/ 38) = 100.0
i
(From LARS *PRINTRESULTS)
Table 2-2 Test Field Percentage (PCT)
Grou No. of Percentage of samples classified into
5 Y- Fuleld  Moscld  Hafcld  Smlcld  Water  Ground
amps
| Fulcld 10 100.0 0.0 0.0 0.0 0.0 0.0
Moscld 2 100.0 0.0 0.0 0.0 0.0 0.0
Rafcld 10 0.0 0.0 80.0 0.0 0.0 20.0
Smicld 36 ¢.0 0.0 0.0 100.0 0.0 G.9
Water 8 0.0 0.0 0.0 0.0 100.0 0.0
Ground 6 0.0 0.0 0.0 0.0 0.0 100.0
72 16.7 0.0 1.1 50.0 1.1 1.1
Overall
Performance 68/ 72) = 94 .4

T i p ey e e s e n;;—*w

R g g

(From LARS *PRINTRESULTS)
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Fig. 6 Integer coded clascification map
of Fige 4.
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classified map, A reasonable guess about the percentage transission of re-

fiected energy passing through the cloud s listed in the following table.

Table 3-1 Cloud blocking information,

Type of Cloud Percentage of Transmission
Full Cloud 10%
Most Cloud 30%
Half Cloud 50%
Small Cloud 75%
Water 100%
Ground 100%

Consider Fig, 6 and Table 3-1 together, a pattern for noise only can be
constructed simply by transforming each coded integer into its corresponding

percentage value. Fig. 7 shows the picture for the noise only,

Fig. 7 Picture of cloud (Half and Small) and
no cloud (Water and Ground).
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classified map. A reasonable guess about the percentage transmissjon of re-

flected energy passing through the cloud is listed in the following teble,

Table 3-1 Cloud blocking information.

Type of Cloud Percentage of Transmission
Full Cloud 10%
Most Cloud 30%
Half Cloud 50%
Small Cloud 75%
Water 100%
Ground 100%

Consider Fig. 6 and Table 3-1 together, a pattern for noise only can be
constructed simply by transforming each coded integer into its corresponding

percentage value. Fig, 7 shows the picture for the noise only,

Fig. 7 Picture of cloud (Half and Small) and
no cloud (Water and Ground).
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V. Homomorphic Filtering Process.
The two dimensional filtering to reduce the cloud effect is accomplished
by weighting each point in the discrete Fourier Transform of the logarithm of

S,
the picture grey levels by a non casual filter function of the form m————

where Si and Ni are the vlaues of the signal and noise power spectrums at the
particular frequency point being considered. Following the filtering process
we take the inverse DFT and then exponentiate to obtain the filtered picture.
See Fig. 8.

VI. Results and Conclusions.

The Tilter function tends to smooth the picture resulting in a loss of
sharp edges. However, the synthesis of high-passed picture to filtered pic-
ture will compensate this disadvantage.

The overall performance of the filtering processes, described in this

report, will be evaluated by classifying the filtered picture and comparing

with the ground true map of the same area. This will be done in the near

future. We are also converting the filtering operation to a three dimensional

filter, to take advantage of the four spectral channels in the filter.
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PDP-11 SOFTWARE DEVELOPMENTS
James J, Besemer

The major accomplishment on the PDP-11 this year was the installation of
a new operating system called UNIX. It was developed at Bell Labs, and is
distributed by Western Electric. ‘he University of 111inois engineered the
system modifications to allow it to communicate with the ARPANET. Our version
of the system has been fully operational since early October, and has been
operating on a 24 hour per day schedule since the first of the year, We are
quite pleased with the new system. With the availability of UNIX, most of the
graduate students and other researchers have been working on transporting their
software from other sites to our PDP-11. Other accomplishments include the
(earlier) installation of an ELF Telnet program, which allowed us our first
access to the ARPANET, and the development of other supporting software.

In July, with cooperation from the staff at the II.LIAC-1V Center for
Advanced Computation, our first running ELF TELNET server was installed. It is
a copy of the ELF software, custom tailored te our system. The current version
supports TELNET through our terminals and FTP to our line-printer. Since we
expected to replace the system with NETWORK-UNIX, we did not expand the ELF to
use the other devices in our system. Since UNIX did not have the network soft-
ware installed when it first arrived, ELF served as our primary entry to the
network. However, when the full, NETWORK-UNIX system was operational, ELF
became obsolete, and is rearly used, except in those instances where hardware
problems disallow the use of UNIX, yet still allow ELF to run.

Our use of the ARPANET remains small. Most of our research has been
carried out either on our own PDP system, or at the Laboratory for the Applica-

tion of Remote Sensing and the Purdue campus central facility. These latter




sites have the large, scientific machines required for our research (two CDC
6600's and an IBM 360). In the future, we plan to use ‘he 360/91 at UCLA and
the [LLIAC-1V,

The development of PDP-11 software over the year can be considered
quarter by quarter. During the first quarter our primary efforts were directed
towards checking out the hardware and getting the DOS system operational. This
was complicated by the fact that there were many hardware problems, and by the -
fact that the DOS system did not arrive until the middle of January, This de- ;
layed the correction of the hardware problems because many of them were not
discovered until after DOS was delivered. We also spent time the first quarter
familiarizing ourselves with the operation of the equipment and the DOS soft-
ware. During the serond quarter we conczrned ourselves with developing basic
software for DOS which allowed access to the non-standard devices, like the
COMTAL color display and the VERSATEK electrostatic printer, and other basic
software to use these devices. We also were investigating the various network
software products which were available at that time. We were considering both
ANTS and ELF., By the end of the second quarter, we had enough information about
ANTS anc ELF, and enough experience with the ARPANET to be able to begin working
on the installation of a network software system. Most of the third quarter

was spent first by debugging the IMP-interface hardware, and working on getting

ELF running on our machine. The software portion of this work was complicated
by the fact that we did r:- have access to the network except via a noisy lipe
to lllinois. Our original plan was to get a magnetic tape containing the £.7
sources, and compile them on our PDP-11, using DOS. Unforturateiy, the DOS
System was not able to compile the (very large) ELF sources, and this was not

discovered until several abortive attempts were made. About the time that tha

hardware was finished (late May), we accepted an offer from the ILLIAC-1V 1AC

¥

4

B o e m»ﬁ_ﬁv—wqmﬁ” - o ——
v




to help us get a copy of their ELF running on our machine. With their assig-
tance, we got the network software running in early July. It was about this
time when we heard about UNIX, and the network software developed for it by
University of Il1linois. We researched it, and decided that for a machine as
large as vurs, that ELF wasted most of the equipment we had. UNIX, on the
other hand, allowed us to access the network, and to perform local processing,
simultaneously. Thus most of the last quarter was spent installing, improving
and testing the UNIX system, We were very pleased, UNIX, used only for net-
work access turned out to be better than ELF, and used only for local process-
ing was better than DOS or RSX. Taken as a whole, it seems to be the best
system available for a moderately sized system like ours. This opinion seem:
to ve shared by othe: PDP-11 network users, as several of the old ELF-followers
have switched to NETWORK-UNIX. UNIX supports FORTRAN, PDP-11 assemply language,
and a high-level language, similar to PL/1, called "C'". It also supports several
"'compiler-compilers' and has a computer language translator, which will be a
tremendous aid to us as we translate out CDC and IBM software to run on the
POP=11, That UNIX is an easy system to use is supported by the fact that to
develop the software to run our COMTAL display and the electrostatic printer
has only about 20% of the development time for the equivalent software for DOS.
This next year we are continuing the development of more UNIX support
software, and converting old programs to run under UNIX; and in particular, we

are starting to do most of our new research projects on the PDP-11 UNIX system,
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QrY

Manufacturer

Beehive Elect.

Tex. Inst.

Digi-Data

DEC
DEC

Fabritek

Versatek
Comtal

Data Printer
True-Data
Tektronix

DEC

Current Equipment Conflguration
February, 1976

Descriptlon

"Super-Bee' Terminals
''Silent 700" Terminals

Industry standard magnetic tape system;
2, 9-track and 1, 7-track drives; one each
NRZI and phase-encoded formatters/controllers

Dual-drive DECtape unit

| \
RPO3 disk drive (40 million characters) *
|
96K-word auxiliary memory system
(64K bought by ARPA, 32K by NASA)

Electrostatic matrix printer

Color picture display

132 column, 600 L.P.M. line printer
Punched card reader

Model 4010, graphics display

PDP-11/45 computer system; system Includes:
32K memory

FPP-11 floating point processor (NSF money)
H960 extension mounting cabinet

3 - small peripheral mountings blocks (DD-11)
1 UNIRUS repeater/expander

DH11, 16=line terminal multiplexor
KWl1=-p programmed clock

"ANTS'" - type PDP-11/IMP interface
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RADC is the principal AFSC organization charqged with
planning and executing the USAF exploratory and advanced
development programs for information sciences, intelli-
gence, command, control and communications technoloqy,
products and services oriented to the needs of the USAF.
Primary RADC mission areas are communications, electro~
magnetic guidance and control, surveillance of ground
and aerospace objects, intelligence data collection and
handling, information system technology, and electronic
reliability, miintainability and compatibility. RADC
has mission responsibility as assigned by AFSC for de-
monstration and acquisition of selected subsystems and
systems in the intelligence, mapping, charting, command,
control and communications areas.
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